GCE

## Physics A

Advanced Subsidiary GCE

## Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk



| Question |  |  | Expected Answers | M | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |  |
|  | a |  | energy per unit area per unit time | B1 | accept power per unit area; allow second for unit time |
|  | b |  | Small changes in R for high light intensities/daylight conditions Large changes in R for low light intensities/dim light/night time conditions <br> to change circuit state need a significant change in R to be useful/reliable | B1 <br> B1 <br> B1 | accept low $R$ by day, high $R$ by night for 1 mark NOT comparison e.g. R by day smaller than R at night max 2 marks from 3 marking points |
|  | c | iii | $\begin{aligned} & \text { 2.5 (k } \Omega) \\ & 5.0=I \times 2.5 \mathrm{k} \Omega \\ & \text { giving } I=2.0 \times 10^{-3} \mathrm{~A} \\ & 4.0=2.0 \times 10^{-3} \times R \text { or potential divider argument } \\ & \text { giving } R=2.0 \times 10^{3} \Omega \end{aligned}$ | A1 C1 A1 M1 A0 | allow 2.4 to 2.6 <br> ecf (c)(i) <br> accept 2.0 mA <br> ecf (c)(ii) or ecf (c)(i) <br> accept $2.0 \mathrm{k} \Omega$ |
|  | d |  | $R(o f ~ L D R)=1(.0 \mathrm{k} \Omega)$ <br> potential divider of $1.0 \mathrm{k} \Omega$ and $2.0 \mathrm{k} \Omega$ <br> giving 3.0 V across LDR | $\begin{aligned} & \text { B1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$ | $\begin{aligned} & \text { accept } I=3.0(\mathrm{~mA}) \\ & \text { so } V=3.0(\mathrm{~mA}) \times 1.0(\mathrm{k} \Omega)=3.0 \mathrm{~V} \end{aligned}$ |
|  | e |  | light shining on the LDR will cause it to switch the illumination off causing an ON/OFF oscillation/AW | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | two suitable qualifying statements for the 2 marks |
|  |  |  | Total question 3 | 12 |  |


| Question |  |  | Expected Answers | M | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 |  |  |  |  |  |
|  | a | i | photoelectric effect/emission | B1 |  |
|  |  | ii1 | the minimum energy (required) to release an electron (from the surface of the metal) $3.5 \times 10^{-19}=6.6 \times 10^{-34} \mathrm{f}$ $\mathrm{f}=5.3 \times 10^{14}(\mathrm{~Hz})$ | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { C1 } \\ \text { A1 } \\ \hline \end{array}$ |  |
|  |  | iii | $\begin{aligned} & \varepsilon=\mathrm{hc} / \lambda=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 4.2 \times 10^{-7} \\ & =4.7 \times 10^{-19}(\mathrm{~J}) \end{aligned}$ | $\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | no second mark unless there is evidence of the calculation being done |
|  |  | iv | $\begin{aligned} & 1 / 2 m v^{2}=4.7 \times 10^{-19}-3.5 \times 10^{-19} \\ & =1.2 \times 10^{-19}(\mathrm{~J}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \text { A1 } \end{aligned}$ | mark for using the p.e. equation accept $1.5 \times 10^{-19}$ from those using $5 \times 10^{-19} \mathrm{~J}$ |
|  | b | $\begin{aligned} & \mathrm{i} 1 \\ & \mathrm{ii2} \end{aligned}$ | $12(\mathrm{eV})$ $\varepsilon=\mathrm{eV}=12 \times 1.6 \times 10^{-19}=1.92 \times 10^{-18}(\mathrm{~J})$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | ecf(b)(i)1 |
|  |  | ii | $\begin{aligned} & 1 / 2 m v^{2}=2.0 \times 10^{-18} \\ & v^{2}=2 \times 2.0 \times 10^{-18} / 9.1 \times 10^{-31}=4.4 \times 10^{12} \\ & v=2.1 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | $1 / 2 m v^{2}=12$ scores $0 / 3$ accept $1.9 \times 10^{-18}$ from (b)(i)2 giving $v=2.0(5) \times 10^{6}$ |
|  | c |  | $\begin{aligned} & \text { e's emitted } / \mathrm{s}=1.2 \times 10^{-8} / 5 \times 10^{-19}=2.4 \times 10^{10} \\ & \text { current }=2.4 \times 10^{10} \times 1.6 \times 10^{-19} \\ & =3.8 \times 10^{-9}(\mathrm{~A}) \text { to } 4.1 \times 10^{-9}(\mathrm{~A}) \end{aligned}$ | $\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$ | using $4.7 \times 10^{-19}$ gives $2.55 \times 10^{10}$ omitting $1 \%$ scores as a POT error allow 4 nA as the question states 'estimate' |
|  |  |  | Total question 4 | 16 |  |



| Question |  |  | Expected Answers | M | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 |  |  |  |  |  |
|  | a | i | method of producing coherent sources at $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ light (waves) from the two slits/sources must be coherent; that is, they must have a constant phase relationship/difference slits must be narrow/close together (so that diffraction patterns overlap) <br> light (waves) from two slits must have similar amplitudes/intensities | $\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$ | e.g. initial single slit <br> max 3 marks from 5 marking points |
|  |  | ii | bright: constructive interference occurs/waves add to give a maximum amplitude at the screen path difference between slits and screen is a whole/integer number of wavelengths/waves arrive in phase at screen dark: destructive interference occurs/waves add to give a minimum amplitude/zero at the screen path difference between slits and screen is an odd half number of wavelengths/waves arrive out of/in antiphase at screen | B1 <br> B1 <br> B1 <br> B1 | accept explanation in terms of distance or phase <br> accept explanation in terms of distance or phase |
|  | b | i | $7.4 / 5=1.48 \times 10^{-3}(\mathrm{~m})$ | B1 | accept 1.5 mm |
|  |  | ii | $\begin{aligned} & \lambda=\times \mathrm{d} / \mathrm{L} \\ & =1.48 \times 10^{-3} \times 0.6 \times 10^{-3} / 1.5 \\ & =5.9(2) \times 10^{-7}(\mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | using 1.5 mm gives 600 nm ecf(b)(i) e.g. $492 \times 10^{-7}$ for 1.23 mm accept 590 nm |
|  | C |  | pattern/fringes vanish <br> because there is now no interference from light from the two slits/AW <br> light spreads out over whole/similar region <br> light intensity (at screen) is less <br> diffraction spreads light <br> simple description of single slit pattern <br> further features of single slit pattern | $\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$ | e.g. bright in middle and dim at edges/sketch of bell shape <br> max 3 marks from 8 marking points |
|  |  |  | Total question 6 | 14 |  |


| Question |  |  | Expected Answers | M | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  |  |  |  |  |
|  | a |  | reference to a transverse wave or to vibrations in plane normal to the direction of (energy) propagation oscillations/vibrations in one direction only/confined to single plane (containing the direction of propagation) | B1 <br> B1 | can be answered with suitable diagram(s) <br> NOT the wave oscillating in one plane |
|  | b |  | set up apparatus, e.g. tray of water on table with lamp/light from window <br> rotate the filter <br> rotation of filter changes the image intensity/brightness/AW correct orientation for maximum and minimum intensities of image <br> move head up or down to change angle of reflected light observed use of protractor to measure angles image/reflection becomes partially plane polarised/ image changes from bright to dim but does not disappear | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 | QWC mark essential for full marks allow from bright to zero or vice versa transmission axis parallel to water surface for maximum and perpendicular for minimum can hold head still and move lamp <br> max 3 from 6 marking points + QWC mark |
|  | c |  | $I=I_{0} \cos ^{2} \theta$ <br> where $I_{0}$ is the maximum intensity (of the polarised beam) when $\theta$ is zero maximum intensity transmitted/ image bright when $\theta$ is $90^{\circ}$ minimum/zero intensity transmitted/image dim/vanished | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | allow incident/original/initial for maximum |
|  |  |  | Total question 7 | 10 |  |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

